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Abstract 

Although general patterns of food insecurity in the U.S. are known, few studies have attempted to 

estimate small area food security or account for ongoing socioeconomic changes. Here we address 

these issues by producing small area estimates of food insecurity in the Atlanta metropolitan area 

using two methodologies: fixed effects modeling and demographic metabolism. In both cases, we use 

county level data from the Current Population Survey to determine the association between food 

insecurity and demographic predictors. These associations are then applied to tract level data from 

the 2009-2013 American Community Survey and projected data for 2020 to create small area 

estimates of food insecurity. We find broad consensus between our two methods. For both time 

periods, food insecurity is highest in southern sections of the city of Atlanta and its neighboring 

suburbs. Projections to 2020, however, show food insecurity rates are projected to increase in outer 

ring suburbs east and west of the city while decreasing in the urban core. These results highlight the 

need to further adapt anti-hunger efforts for often sprawling suburban communities, where poverty 

rates are increasing but spatial mismatch combined with poor transit access may hinder access to 

food assistance. 

https://www.tandfonline.com/doi/abs/10.1080/00330124.2017.1325751
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Food security—defined by the U.S. Department of Agriculture as access “at all times to enough 

food for an active, healthy life” (Coleman-Jensen 2015)—plays a foundational role in households’ 

health and welfare. Recent research finds that low food security—or food insecurity—is correlated 

with depression and developmental disorders  (Carter, Dubois, and Tremblay 2014; Heflin, Siefert, 

and Williams 2005; Kirkpatrick, McIntyre, and Potestio 2010; Slopen et al. 2010), poorer 

nutritional intake  (Leung et al. 2014), weight gain, and other chronic diseases  (Laraia 2012; 

Seligman, Laraia, and Kushel 2010). While these studies focus on the health outcomes connected 

to food insecurity, it is important to note that food insecurity is itself the product of multiple 

overlapping economic and social relations at a variety of scales (Sonnino, Marsden, and Moragues-

Faus 2016; Jarosz 2014). These include, for example, systems of agricultural production and 

distribution, local and global labor markets, and systems of social assistance.   

 

According to the Current Population Survey (CPS), the national rate of food insecurity in 2014 was 

14 percent (Coleman-Jensen et al. 2015). A number of studies have identified demographic 

characteristics associated with higher than average rates. Coleman-Jensen et al. (2011, 13) identify 

high national rates of food insecurity for households in poverty (40 percent), households with young 

children (20 percent), and those headed by a single parent, especially a single woman (35 percent)  

(see also Harris et al. 2014; Mayer et al. 2014). African-Americans (26 percent) and Hispanics (22 

percent) also had rates well above the national average. A review by the non-profit Research 

Triangle Institute (2014) identified other populations at high risk for food insecurity: recent 

migrants and refugees, those with a disability, and those with other serious medical conditions. 
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The populations most at-risk for food insecurity have historically been clustered near the city center 

in U.S. urban areas, and many social services providing food assistance have located in or near these 

neighborhoods. Yet research over the last two decades has shown the most rapid increases in 

poverty—closely correlated with food insecurity—have occurred in suburban neighborhoods 

(Anacker 2015; Kneebone and Berube 2013; Kneebone and Garr 2010).  The causes of this shift are 

complex, including gentrification in the urban core, changing patterns of low wage employment and 

affordable housing, and an increase in the number of immigrants directly settling in suburban 

communities  (Kneebone and Berube 2013). While suburbs have never been as racially or 

economically homogeneous as depicted in popular media (Lassiter and Niedt 2013; Pooley 2015), 

the suburbanization of poverty within the U.S. has dramatically reshaped many communities. In 

these often sprawling neighborhoods, spatial mismatch—where individuals live in neighborhoods 

far from work or necessary social services—can further complicate the lives of food insecure 

households, making it difficult to access food assistance or do routine shopping (Allard 2009; 

Blumenberg 2004; Cooper et al. 2012; Li, Campbell, and Fernandez 2013).  Research identifying 

shifting patterns of food insecurity in cities and their suburbs can identify where geographically 

targeted interventions may be most beneficial. 

 

Studying changing patterns of food security at the neighborhood scale is complicated by a lack of 

readily accessible data. Some research has adapted food security questionnaires for use with local 

communities (Chung et al. 2012; Harris et al. 2014; Kalichman et al. 2010; Lee, Shannon, and 

Brown 2014; Mayer et al. 2014). While useful, these studies are labor intensive and expensive, 

often producing just a single cross sectional sample for one narrowly targeted region or group. 

Other research has produced county level estimates using statistical models with existing 

secondary demographic data (Bartfeld and Dunifon 2007). One recent analysis, supported in part 
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by the national organization Feeding America, used fixed effects models with existing CPS data to 

assess the association between relevant demographic variables and food insecurity rates  

(Gundersen, Engelhard, and Waxman 2014). Model coefficients were then applied to county data 

from the American Community Survey (ACS) to produce county level food insecurity estimates. 

These estimates can be reproduced each year, highlighting local trends and informing strategic 

planning decisions for local agencies. Still, within urban areas, county level estimates are often too 

coarse to capture incremental change in food insecurity at the neighborhood level, especially when 

identifying differences between urban and suburban areas. Neighborhood level estimates can 

provide better insight on localized changes on the prevalence of food insecurity, illuminating 

important, but nuanced, shifts. 

 

Completed in partnership with the Atlanta Community Food Bank, our analysis provides this local 

scale analysis for the Atlanta metropolitan area, identifying the existing prevalence of and projected 

changes to food security rates at the census tract level. Using census data from both the CPS and ACS 

we apply two different methodological approaches, one based on fixed effects modeling and the 

other using demographic metabolism, to create tract level estimates (Gundersen et al. 2014; Lutz 

2012). We show how existing infrastructure related to public transit and available food assistance 

may amplify the harmful effects of food insecurity where spatial mismatch is greatest and growing. 

Our research contributes to scholarship on the changing geography of poverty in American cities 

and informs future planning efforts for local anti-hunger agencies and activists. 

 

Setting, Data, and Methods 

Our analysis, outlined in Figure 1, makes use of two estimation methods and several sources of data. 

Following Gundersen et al. (2011), we first employ fixed effects modeling to identify relationships 

between food insecurity and several demographic variables using existing county level data from the 
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Current Population Survey. We then apply the coefficients from these models to existing tract level data 

from the American Community Survey (2009-2013) and projected tract level census data (to 2020) to 

produce food insecurity estimates. Our second approach, demographic metabolism, identifies food 

insecurity in the CPS data for age stratified racial subgroups and applies these rates to current and 

projected tract level census data. By using two different approaches to estimating food insecurity, we 

control for possible errors unique to either approach.   

 

Given the uncertainty in any estimation, our analysis focuses on broad trends across the Atlanta 

metropolitan area. In addition to visualizing our results, we also use local indicators of spatial 

autocorrelation (LISA) to identify regions with significantly autocorrelated high and low values for 

both current food insecurity rates and projected changes to those rates by 2020. We also compare 

our results to public transit infrastructure and existing food pantries to assess any growth in spatial 

mismatch for food insecure households. 

 

Figure 1: Outline of process used for tract estimation 

 

[Figure 1 about here] 

 

Setting 

Our study area is the Atlanta-Sandy Springs-Roswell metropolitan statistical area (MSA), defined by 

boundaries from the U.S. Census (U.S. Census Bureau 2016a). In 2015, the Atlanta MSA had a 

population of approximately 5.7 million, 9th largest in the country (United States Census Bureau 

2015). This figure reflects an increase of 5 percent compared to the estimated 2010 population. 

According to ACS data, residents of this region are slightly younger than the U.S. average, with a 

median age of 35.4 compared to the national median of 37.4 (U.S. Census Bureau 2015). The Atlanta 
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MSA has a higher percentage of non-white residents than the country as a whole. While 74 percent 

of U.S. residents are classified as Non-Hispanic White, only 56 percent of Atlanta area residents are 

classified in this way (U.S. Census Bureau 2015). Conversely, 33 percent of the area’s residents are 

classified as African-American alone, notably higher than the national rate of 13 percent. Median 

household income in the Atlanta MSA is $56,618, similar to the national figure of $53,412 (U.S. 

Census Bureau 2015).  

 

Like most U.S. metropolitan areas, income distribution across the MSA is highly segregated. In the 

affluent northern suburb of Alpharetta, median household income is $87,837 and the reported 

poverty rate is 5.1 percent. In the city of East Point, just south and west of Atlanta, median household 

income is $39,433 and the reported poverty rate is 27.1 percent (U.S. Census Bureau 2015). Fulton 

County’s Gini coefficient—a statistic often used to measure economic inequality—is 0.53, showing 

higher disparities than the national figure of 0.48 (U.S. Census Bureau 2015). Racial segregation 

follows a similar pattern to income, with high concentrations of white populations directly north of 

Atlanta, and largely African-American populations in the southern half of the metro area (Holloway, 

Wright, and Ellis 2012). Atlanta also fits the national trend of increasing suburban poverty. The 

population of suburban Gwinnett County grew from 588,448 in 2000 to 842,901 in 2014, a 43 

percent increase  (U.S. Census Bureau 2015). During the same time, the county’s poverty rate 

increased nearly threefold, from 4 percent to 11 percent  (U.S. Census Bureau 2015). 

 

Demographic variables associated with food insecurity 

In phase one of our analysis, we use publically available CPS data for counties in two census regions 

most similar to our study area in demographic composition: the East South Central and South 

Atlantic (U.S. Census Bureau 2016b). We downloaded CPS data on the variables listed below from 

2009, the first year all variables of interest were present, until 2013. County level CPS data can vary 
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in quality, and our initial set of 81 counties was reduced to 69 when we removed counties with 

outlying values and high year to year variability, resulting in a total of 345 county-years for analysis 

 

Each December, the CPS includes a Food Security Supplement, a series of questions designed to 

assess households’ ability to meet their basic dietary needs (Coleman-Jensen, Gregory, and Singh 

2014). The Food Security Supplement was first used by the U.S. Department of Agriculture (USDA) 

in 1996, and has provided yearly data since that time. The USDA classifies individual respondents 

into one of four categories: high food security, marginal food security, low food security, and very 

low food security. Studies commonly group the latter two categories into a single category, labeled 

“food insecure” (Coleman-Jensen et al. 2014; Sattler and Lee 2013). We likewise used this condensed 

classification as our variable of interest. We then assessed the associations between food insecurity 

and demographic variables provided by the CPS, including race, Hispanic/Latino status, poverty 

status, disability status and unemployment. Each of these variables is linked to food insecurity in the 

prior research described in our introduction.  

 

We then modeled county level food insecurity using two methods, as shown in Figure 1. For our first 

approach, we calibrated a fixed effects model with household level food insecurity as the dependent 

variable and other demographic factors as independent variables: percent unemployed, percent 

disabled, percent with household income less than 185 percent of the poverty line, percent black, 

and percent Hispanic. 

 

The second approach, demographic metabolism, identifies of the structure of food insecurity across 

demographic subgroups (Lutz 2012). In this method, we analyzed food insecurity rates by racial 

subgroups stratified by age within the CPS data. For example, we identified rates of food insecurity 

for African-Americans in each five year age group: under 4 years of age, 5-9 years of age, and so on. 
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These rates can then be applied to other datasets, such as tract level census data, to produce 

population estimates. Using additional subgroups beyond race is problematic, as the census does not 

offer age stratified cross tabulated data including all variables used in our fixed effects model. As a 

result, we used only race as a demographic variable with this method. This approach is justified as 

race has been a consistent predictor of food insecurity in past research (Gundersen et al. 2014). 

 

Creating tract level estimates  

To create census tract level estimates in phase two of our analysis, we made use of demographic 

data from both the American Community Survey (ACS) and the decennial census. For estimates of 

current food insecurity, we use ACS data at the tract level from 2009-2013 for the same variables as 

our fixed effects model above: rates of unemployment, disability status, and household income below 

185 percent of the poverty line, as well as portions of the population classified as African-American 

and Hispanic.  

 

For estimates of future food insecurity, we drew upon tract level decennial census data from 2000 and 

2010, using the commonly employed Hamilton-Perry method with these data to create population 

estimates for 2020 (Swanson, Schlottmann, and Schmidt 2010). The Hamilton-Perry method utilizes 

cohort-change ratios (CCRs), computed from two censuses, to project populations by age and sex in a 

two-step process (Swanson, Schlottmann, and Schmidt 2010). The methods uses these two equations : 

 

𝐶𝐶𝑅𝑥𝑛 = (
𝑃𝑥+𝑦,𝑙𝑛

𝑃𝑥,𝑏𝑛

)  

 

 

𝑃𝑥,𝑡 =𝑛 𝐶𝐶𝑅𝑥𝑛 ∗  𝑃𝑥+𝑦,𝑙𝑛  
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Where: 

𝑃𝑥+𝑦,𝑙𝑛  is the population aged x to x+n at time l, the most recent census where y is the number of 

years between censuses. 

 

𝑃𝑥,𝑏𝑛  is the population aged x to x+n at time b, the second most recent census. 

 

𝐶𝐶𝑅𝑥𝑛  is the cohort change ratio between time b and time l. 

 

𝑃𝑥,𝑡𝑛  is the population aged x to x+n at time t, the projected year 

 

 

Hamilton-Perry requires two exceptions for the CCRs to accommodate births and the open-ended 

age interval of 85+. For births, the child/woman ratio for the populations aged 0-4 and 5-9 are 

calculated based on the number of women aged 15-45 and multiplied by the projected female 

population. For the open ended interval, the CCR is calculated as the ratio of the population aged 85+ 

to the population aged 75+. The result of Hamilton-Perry is complete age/sex projections for the 

population aged 0-75+ for each of our demographic subgroups.  

 

We used these current and estimated populations to create our tract level estimates by applying the 

results produced by our county analyses using CPS data in phase one. In the fixed effects model 

approach, we applied model coefficients from the CPS data to the same variables 2009-2013 ACS and 

projected 2020 populations. For demographic metabolism, we applied food insecurity rates for each 

age stratified racial group groups in the current and projected tract level data. For example, if the 
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food insecurity rate for African-Americans aged 40-44 was 14 percent in the CPS data, we would 

apply this rate to the same racial/age group in current tract level ACS data and to the group’s 

projected population in 2020. We then summed the number of food insecure individuals in each 

subgroup within each tract to calculate the projected food insecurity rate. 

 

Identifying clusters and trends 

Our analysis of these tract level estimates identifies both the prevalence of food insecurity in current 

data and projected changes in 2020. We use local identifiers of spatial autocorrelation (LISA) 

analysis to identify statistically significant clusters in both cases. (Anselin 1995). LISA identifies 

regions where tracts and their neighbors are higher or lower than would be likely by chance or 

where a tract is a spatial outlier among its neighbors—a high value surrounded by low values, for 

example. In addition, to analyze regional trends, we visualize projected tract level change by county 

to identify those sections of the MSA containing tracts with particularly high or low change in rates. 

Lastly, we compare tracts with significant increases and decreases in food security to existing public 

transit infrastructure and food pantry locations to identify those areas where problems linked to 

spatial mismatch may increase in coming years.  

 

Results 

The results of our fixed effects model based on CPS county level data show that increases in rates of 

poverty, percentage African-American, and percentage unemployed were significantly associated 

with elevated rates of food insecurity (Table 1). Of these, the effect of unemployment had the 

greatest magnitude, roughly double that of increases in poverty or African-Americans (0.475 vs. 

0.235 and 0.215 respectively). All listed coefficients were positive except for percent 

Hispanic/Latino, which showed a small negative effect. Though not significant, this result runs 

counter to other research showing elevated rates of food insecurity among Hispanic households  
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(Coleman-Jensen et al. 2014; Coleman-Jensen 2012). We include it in our model based on its 

significant role in prior research, but given the modest rate of Hispanics in the Atlanta MSA (10.4 

percent in 2014 (U.S. Census Bureau 2015)) and the small coefficient, this variable has a minimal 

effect in our tract level estimates. 
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Table 1: Results for fixed effects regression of county level factors on food insecurity, based on 
yearly CPS data, 2009-2013 
 

Variable 
Coefficient 

(SE) 

Percent in poverty 
0.235*** 

 (0.050) 

Percent with a disability 
0.152 

 (0.124) 

Percent African-American 
0.215** 

 (0.078) 

Percent Hispanic/Latino 
-0.114 

 (0.093) 

Percent unemployed 
0.475** 

 (0.173) 
 

We use these coefficients to calculate tract level food insecurity based on American Community 

Survey data (figure 2B). Figure 2 shows these results (2B) alongside county level estimates from 

prior research (Gundersen et al. 2014) (2A), tract level estimates using demographic metabolism as 

a method (2C), and a comparison of these models (2D). A visual comparison demonstrates the 

advantage of tract estimation over county estimation. Tract level data highlight a division in Fulton 

and DeKalb counties, with low rates of food security in northern tracts and high rates in southern 

ones. In county level data, these two halves of the county counterbalance one another, producing a 

picture of moderate, but not extreme, food insecurity that obscures neighborhood level variation. In 

addition, tract level data also show a region with very high food insecurity rates that spans Fulton, 

DeKalb, and Clayton counties, a pattern likewise masked by county level data. Tract level data also 

reveal sub-county pockets of high food insecurity. Coweta, Walton and Cobb counties all appear to 

have low rates in figure 2A, but figures 3B and 3C show small areas of high food insecurity at the 

sub-county level.  

 

While our two estimation methods produce geographically similar results, there are also notable 

differences (figure 2D). The fixed effects model has a higher mean food insecurity rate (19.5 percent 
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vs. 17.4 percent) and also a higher standard deviation (9.5 percent vs. 5.5 percent). The fixed effects 

model is lower than demographic metabolism estimates in areas where food insecurity is low (the 

northern metro) and higher where food insecurity is high (southern Fulton, southern DeKalb, and 

Clayton counties), meaning that the fixed effects model produced greater variability in rates. 

 

Figure 2: Comparison of two tract level food insecurity estimates and county level estimates from 

Gundersen, et al. (2014) 

 

[Figure 2 about here] 

 

Differences between our two methods are less apparent when calculating changes in food security 

from current to projected rates. According to the fixed effects model food insecurity will increase by 

an average of 0.12 percent (s.d. 1.19), while the demographic metabolism method predicts an 

average decrease of 0.08 percent (s.d. 1.27). Both these figures are close to zero, suggesting no 

significant change in the region as a whole. But some significant tract level trends are evident within 

the study area. Figure 3 depicts projected change in food insecurity rate at the tract level using both 

methods (3A and 3B), as well as clusters of high and low change levels across the study area as 

revealed by LISA analysis (3C and 3D). In both models, food insecurity rates are projected to 

increase in suburban tracts, especially in a band stretching from eastern Gwinnett County through 

Henry County. A less clearly defined band of increased rates is seen on the west side of the MSA in 

and around Paulding County. Rates are projected to decrease in the urban core in the middle 

sections of Fulton and DeKalb counties, though overall food insecurity will remain high in both these 

areas.  

 

Figure 3: Change in food insecurity from present day to 2020 with clustering identified using LISA 
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[Fig. 3 about here] 

 

To further illustrate this trend, figure 4 is a density plot showing the distribution of projected tract 

level changes in food insecurity aggregated by county. Several suburban counties, including Douglas, 

Henry, Newton, Paulding, and Rockdale, have centers skewed noticeably to the right of other 

counties, showing higher projected increases in food insecurity within their tracts. Other suburban 

counties show a bimodal distribution or positive skew, such as Fayette, Forsyth, and Gwinnett, 

suggesting divergent trends across tracts. Both the fixed effects model and demographic metabolism 

show similar trends. 

 

Figure 4: Density plots of tract level change in food insecurity, current to 2020, aggregated by 

county 

 

[Figure 4 about here] 

 

Lastly, we examined the location of public transit routes and existing food pantry sites relative to 

areas where food insecure populations are expected to increase. In figure 5, the red lines are transit 

routes (5A) and red dots are food pantries (5B), while each black dot represents a projected 250 

additional food insecure individuals by 2020. Both figures illustrate that the significant increase in 

food insecure populations in suburban areas sharply contrasts with the high density of both transit 

and pantries in the urban core. Some suburban areas with large increases in food insecure 

population have no access to transit and only limited access to food pantries. This includes several 

counties in the eastern suburbs (e.g. Henry and Newton counties), and southwest (southern Fulton 

County), and west (e.g. Paulding County). For Gwinnett County, in the northeast corner of the study 
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area, several food pantries are already operating, but the significant projected increase of food 

insecurity in this area may overwhelm the current capacity of these sites. 

 

Figure 5: Comparison of newly food insecure populations and existing public transit and food 

pantries 

 

[Figure 5 about here] 

 

Discussion 

This analysis produced estimates of food insecurity at the census tract level for the Atlanta MSA. We 

know of no other research which has done so for an entire metropolitan area through use of 

publically available, annually produced secondary datasets. We used two different approaches to 

create our estimates, and while the fixed effects models produced estimates with more variability 

than demographic metabolism, both showed similar patterns of current and projected food 

insecurity across the MSA.  

 

Currently, we find the highest rates of food insecurity in the southern half of the study area, 

particularly in Fulton, DeKalb, and Clayton counties, with pockets of high food insecurity scattered in 

the outer suburbs. Several of these within-county suburban clusters (e.g. Walton or Coweta 

counties), are obscured by county scale analysis. Our projections for 2020 show rates of food 

insecurity declining in the urban core and increasing in the suburbs, particularly in the eastern half 

of the MSA. The ability to forecast future trends, rather than retrospectively analyze survey data, is a 

significant benefit of our approach.  

 

These findings correspond with broader research demonstrating that for many U.S. cities, poverty 
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and its related effects are increasingly suburban problems  (Anacker 2015; Kneebone and Garr 

2010). Continued high rates of food insecurity in core urban neighborhoods demonstrate that anti-

hunger efforts there should continue, but attention should also be given to the increasing challenges 

facing food insecure households in suburban areas. For example, Atlanta has one of the highest rates 

of urban sprawl of any American city, necessitating high rates of auto use and relatively poor access 

to public transit, as Figure 5 illustrates (Basmajian 2013; Brown and Thompson 2008; Bullard, 

Johnson, and Torres 2000). The expansion of public transit in Atlanta remains a politically charged 

issue but has serious consequences for the growing number of food insecure households in 

suburban areas that lack access to resources such as food pantries in their immediate 

neighborhoods  (Bluestein 2016).  

 

The task for hunger assistance programs, then, is not just how to provide access to food through 

food pantries or monetary assistance, but also how to help households navigate sprawling suburban 

landscapes or increasing use of projects such as mobile food pantries. Additionally, anti-hunger 

efforts in suburban communities may necessitate different forms of mobilization than in the urban 

core, including informational campaigns about increased food insecurity for residents and 

community leaders, advocacy for transit expansion and improved service sector wages, support for 

community agriculture, and innovative methods for delivering health care and related social 

services (Bastian and Napieralski  2015). Specific strategies may include placing mobile food 

pantries at sites already part of daily routines (e.g., schools or transit centers). For example, the 

Atlanta Community Food Bank—who provided a grant for this research—partners with Covington 

First United Methodist on a mobile pantry program. This initiative takes place in one of our 

projected hot spots for growth in food insecurity, and it delivers up to 15,000 pounds of food, or 

enough for 200-250 families each month as a supplement to weekly pantry food distribution.  
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“One stop shop” sites that combine medical care, food assistance, and job counseling also help lower 

the time and financial costs of seeking assistance, particularly in suburban communities where these 

costs can be high. In Atlanta for example, the Community Assistance Center in suburban Sandy 

Springs provides adult classes, tax preparation, financial assistance, and help with enrolling for 

government assistance programs such as SNAP or SSI (Community Assistance Center 2017).  

Informational campaigns designed to dispel the stigma associated with food insecurity and can also 

highlight the challenges of low wage employment in suburban communities.  These approaches 

recognize the need for a relational approach to food insecurity and similar health concerns, adopting 

a holistic perspective on the processes that produce and reproduce health disparities (Cummins et 

al. 2007; Sonnino, Marsden, and Moragues-Faus 2016).  

 

Our study has several limitations. We conduct our analysis on just one major American city, and a 

similar analysis may find different patterns in other metropolitan areas. Still, one main benefit our 

approach is the relative ease with which it can be duplicated. Because our analysis included 

population projections, we were limited to only variables with detailed age stratification available. 

For example, we were not able to include variables such as home ownership, where the Census 

provides only broad age breakdowns (e.g., age 18-64). Finally, as our estimates are derived from 

Census data, they do not fully replace survey based approaches that may result in more accurate 

figures.  

 

In spite of these limitations, this analysis provides insight into changing patterns of food insecurity 

at the neighborhood level within a major American city using publicly available data. It 

demonstrates that food insecurity is a growing issue in suburban communities as well as in core 

urban areas. Addressing the challenges of sprawl and spatial mismatch may thus be key challenges 

in anti-hunger work and activism in future years.  
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